14.2: Line Integrals

1. Piecewise Smooth Curves: A curve C is piecewise smooth if the interval [a,b] can be partitioned into a finite number of subintervals, on each of which C is smooth.

2. Definition of Line Integral

If f is defined in a region containing a smooth curve C of finite length, then the line integral of \mathbf{f} along \mathbf{C} is given by

$$
\begin{align*}
& \int_{C} f(x, y) d s=\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}\right) \Delta s_{i} \tag{Plane}\\
& \text { OR } \\
& \int_{C} f(x, y, z) d s=\lim _{\|\Delta\| \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}, y_{i}, z_{i}\right) \Delta s_{i} \quad \text { (Space) }
\end{align*}
$$

Provided the limit exists.
Evaluation of a line integral is best accomplished by converting to a definite integral.

3. Theorem 14.4: Evaluation of a Line Integral as a Definite Integral

Let f be continuous in a region containing a smooth curve C. If C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$ where $a \leq t \leq b$, then

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(x(t), y(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t
$$

If C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$, where $a \leq t \leq b$ then

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d t
$$

Note: $\int_{C} 1 d s=\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t=$ length of curve C
For the parameterization given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}$, it is helpful to remember the form

$$
\text { ds as } d s=\left\|\mathbf{r}^{\prime}(t)\right\| d t=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}} d s
$$

4. Definition of Line Integral of a Vector Field

Let F be a continuous vector field defined on a smooth curve C given by $\mathbf{r}(\mathrm{t})$, $a \leq t \leq b$. The line integral of \mathbf{F} on C is given by

$$
\int_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{C} \mathbf{F} \bullet \mathbf{T} d s=\int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \bullet \mathbf{r}^{\prime}(t) d t
$$

Application: The total work done is given by the following integral:

$$
W=\int_{C}^{\Delta W_{i}=(\text { force })(\text { distance })} \mathbf{F}(x, y, z) \bullet \mathbf{T}(x, y, z) d s
$$

5. For line integrals of vector functions, the orientation of the curve \mathbf{C} is important. If the orientation of the curve is reversed, the unit tangent vector $\mathbf{T}(\mathrm{t})$ is changed to - $\mathbf{T}(\mathrm{t})$, and you obtain

$$
\int_{-C} \mathbf{F} \bullet d \mathbf{r}=-\int_{C} \mathbf{F} \bullet d \mathbf{r}
$$

6. Line Integrals in Differential Form

A second commonly used form of line integrals is derived from the vector field notation used in the preceding section. If F is vector field of form $\mathbf{F}(\mathrm{x}, \mathrm{y})=\mathbf{M i}+$ $\mathrm{N} \mathbf{j}$, and C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, then $\mathbf{F} \bullet d \mathbf{r}$ is often written $\mathrm{Mdx}+\mathrm{N} d y$.

$$
\int_{C} \mathbf{F} \bullet d \mathbf{r}=\int_{C} F \bullet \frac{d \mathbf{r}}{d t} d t=\int_{C}(M d x+N d y)
$$

This differential form can be extended to three variables.

