13.5: Surface Area

1. Definition of Surface Area

If f and its first partial derivatives are continuous on the closed region R in the $x y-$ plane, then the area of the surface S given by $z=f(x, y)$ over R is given by

$$
S=\int_{R} \int d S=\int_{R} \int \sqrt{1+\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}} d A
$$

2. Sometimes converting from rectangular to polar coordinates is easier.

$$
\text { Recall: } \begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

