13.4: Center of Mass and Moments of Intertia

1. Definition of Mass of a Planar Lamina of Variable Density

If ρ is a continuous density function on the lamina corresponding to a plane region R, then the mass m of the lamina is given by

$$
m=\int_{R} \int \rho(x, y) d A \quad \text { Variable Density }
$$

2. Moments and Center of Mass of a Variable Density Planar Lamina

Let ρ be a continuous density function on the planar lamina R. The moments of mass with respect to the x and y axes are

$$
M_{x}=\int_{R} \int y \rho(x, y) d A \text { and } M_{y}=\int_{R} \int x \rho(x, y) d A
$$

If m is the mass of the lamina, then the center of mass is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)
$$

If R represents a simple plane region rather than a lamina, the point (\bar{x}, \bar{y}) is called the centroid of the region.

- For some planar laminas, you can determine the center of mass using symmetry rather than using integration.
- Although you can think of the moments as measuring the tendency to rotate about the x and y axis, the calculation of moments is usually an intermediate step toward finding the center of mass.
- The moments of mass used to determine the center of mass of a lamina are sometimes called the first moments about the x and y axis.

3. The Second Moment or Moment of Inertia

In the same way that mass is a measure of the tendency to resist a change in a straight line motion, the moment of inertia about a line is a measure of the tendency of matter to resist change in a rotational motion.

The second moments denoted I_{x} and I_{y} are the product of mass time the square of the distance.

$$
I_{x}=\int_{R} \int y^{2} \rho(x, y) d A \text { and } I_{y}=\int_{R} \int x^{2} \rho(x, y) d A
$$

The sum of the moments I_{x} and I_{y} is called the polar moment of inertia and is denoted I_{0}.

The moment of inertia of a revolving lamina can be used to measure its kinetic energy.

$$
E=\frac{1}{2} I \omega^{2}
$$

Kinetic energy of a mass moving in a straight line is proportional to its mass, but kinetic energy of a mass revolving about an axis is proportional to its moment of inertia.

4. The radius of gyration \bar{r} of a revolving mass \mathbf{m} with moment of inertia \mathbf{I} is

 defined to be$$
\overline{\bar{r}}=\sqrt{\frac{I}{m}}
$$

The radius of gyration can also be calculated with respect to the x and y axes. See page 968

