13.3: Changes of Variables: Polar Coordinates

1. Some integrals are much easier to evaluate in polar form than in rectangular form. Recall from section 9.4:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& r^{2}=x^{2}+y^{2} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

2. Theorem 13.3: Change of Variables to Polar Form

Let R be a plane region consisting of all points $(\mathrm{x}, \mathrm{y})=(\mathrm{r} \cos \theta, \mathrm{r} \sin \theta)$ satisfying the conditions $0 \leq g_{1}(\theta) \leq r \leq g_{2}(\theta), \alpha \leq \theta \leq \beta$, where $0 \leq(\beta-\alpha) \leq 2 \pi$. If g_{1} and g_{2} are continuous on $[\alpha, \beta]$ and f is continuous on R , then

$$
\int_{R} \int f(x, y) d A=\int_{\alpha}^{\beta} \int_{g_{1}(\theta)}^{g_{2}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

The region R is restricted by two basic types: \mathbf{r}-simple regions and $\boldsymbol{\theta}$-simple regions.

Be sure to notice the extra factor of r in the integrand. This comes from the formula for are of a polar section. In differential notation, $d A=r d r d \theta$, which indicates that area of a polar sector increases as you move away from the origin.
3. Just as with rectangular coordinates, the double integral $\int_{R} \int d A$ can be used to find the area of a region in the plane.

