12.8: Extrema of Functions of Two Variables

1. Theorem 12.15: Extreme Value Theorem

Let f be a continuous function of two variables x and y defined on a closed bounded region R in the xy-plane.

- There is at least one point in R where f takes on a minimum value.
- There is at least one point in R where f takes on a maximum value.

Recall: A minimum is also called an absolute minimum and a maximum is also called an absolute maximum.

2. Definition of Relative Extrema

Let f be a function defined on a region R containing ($\mathrm{X}_{0}, \mathrm{y}_{0}$).

- The function f has a relative minimum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ if

$$
f(x, y) \geq f\left(x_{0}, y_{0}\right)
$$

for all (x, y) in an open disc containing $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.

- The function f has a relative maximum at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ if

$$
f(x, y) \leq f\left(x_{0}, y_{0}\right)
$$

for all (x, y) in an open disc containing $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.

3. Definition of Critical Point

Let f be a function defined on a region R containing ($\mathrm{x}_{0}, \mathrm{y}_{0}$). The point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ is a critical point of f if one of the following is true.

- $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$
- $f_{x}\left(x_{0}, y_{0}\right)$ or $f_{y}\left(x_{0}, y_{0}\right)$ does not exist.

4. Theorem 12.16: Relative Extrema Occur Only at Critical Points.

5. Theorem 12.17: Second Partials Test

Let f have continuous second partial derivatives on an open region containing a point (a, b) for which

$$
f_{x}(a, b)=0 \text { and } f_{y}(a, b)=0
$$

To test for relative extrema of f, consider the quantity

$$
d=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

- If $\mathrm{d}>0$ and $f_{x x}(a, b)>0$, then f has a relative minimum at (a, b).
- If $\mathrm{d}>0$ and $f_{x x}(a, b)<0$, then f has a relative maximum at (a, b).
- If $\mathrm{d}<0$ then $(\mathrm{a}, \mathrm{b}, \mathrm{f}(\mathrm{a}, \mathrm{b}))$ is a saddle point.
- The test is inconclusive if $\mathbf{d}=\mathbf{0}$.

