12.7: Tangent Planes and Normal Lines

1. So far we have represented surfaces in space primarily by equations of the form $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$. In some cases it is more convenient to use the more general form $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$. You can convert to the general form by defining F as

$$
F(x, y, z)=f(x, y)-z
$$

Since $f(x, y)-z=0$, you can consider S to be the level surface of F given by $F(x, y, z)=0$.

2. Definition of Tangent Plane and Normal Plane

Let F be differentiable at the point $\mathrm{P}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ on the surface S given by $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ such that $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$

- The plane through P that is normal to $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is called the tangent plane to S at P.
- The line through P having the direction of $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is called the normal line to S at P.

$$
x=x_{1}+a t
$$

Recall: The equation of a normal line is $y=y_{1}+b t$ or

$$
z=z_{1}+c t
$$

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

3. To find a unit normal vector to a surface, you can normalize the gradient vector.

$$
\mathbf{n}=\frac{\nabla F}{\|\nabla F\|}
$$

4. Theorem 12.13: Equation of Tangent Plane

Let F be differentiable at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$, then an equation of the tangent plane to the surface given by S by $F(x, y, z)=0$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is

$$
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

Because $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the tangent plane at $\left(x_{0}, y_{0}, z_{0}\right)$, it must be orthogonal to every vector in the tangent plane, and you have

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \bullet \mathbf{v}=0
$$

5. The Angle of Inclination of a Plane

The angle of inclination of a plane is defined to be the angle $\theta, 0 \leq \theta \leq \pi / 2$, between the given plane and the $x y$-plane. Since vector \mathbf{k} is normal to the xy-plane, you can use the formula for the cosine of the angle between two planes.

$$
\cos \theta=\frac{|\mathbf{n} \cdot \mathbf{k}|}{\|\mathbf{n}\|\|\mathbf{k}\|}=\frac{|\mathbf{n} \cdot \mathbf{k}|}{\|\mathbf{n}\|}
$$

6. Theorem 12.14: Gradient is Normal to Level Surfaces

If F is differentiable at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ and $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, then $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ is normal to the level surface through $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$

