12.6: Directional Derivatives and Gradients

1. Definition of Directional Derivative

Let f be a function of two variables x and y and let $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$ be a unit vector. Then the directional derivative of f in the direction of \mathbf{u}, denoted by $D_{u} f$ is

$$
D_{\mathbf{u}} f(x, y)=\lim _{t \rightarrow 0} \frac{f(x+t \cos \theta, y+t \sin \theta)-f(x, y)}{t}
$$

provided the limit exists.

2. Theorem 12.9: Directional Derivative

If f is a differentiable function of x and y , then the directional derivatives of f in the direction of the unit vector $\mathbf{u}=\cos \theta \mathbf{i}+\sin \theta \mathbf{j}$ is

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta
$$

There are infinitely many directional derivatives to a surface at a given point - one for each direction specified by \mathbf{u}. Two of these are the partial derivatives f_{x} and f_{y}.
i) Direction of positive x-axis $(\theta=0): \mathbf{u}=\cos 0 \mathbf{i}+\sin 0 \mathbf{j}=\mathbf{i}$

$$
D_{\mathrm{i}} f(x, y)=f_{x}(x, y) \cos 0+f_{y}(x, y) \sin 0=f_{x}(x, y)
$$

ii) Direction of positive y-axis $(\theta=\pi / 2): \mathbf{u}=\cos (\pi / 2) \mathbf{i}+\sin (\pi / 2) \mathbf{j}=\mathbf{j}$

$$
D_{\mathbf{j}} f(x, y)=f_{x}(x, y) \cos \frac{\pi}{2}+f_{y}(x, y) \sin \frac{\pi}{2}=f_{y}(x, y)
$$

3. The gradient of a function of two variables is a vector valued function of two variables. This function has many important uses, which we will discover.

Definition of Gradient of a Function of Two Variables

Let $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ be a function of x and y such that f_{x} and f_{y} exist. Then the gradient of f , denoted $\nabla f(x, y)$ is the vector

$$
\nabla f(x, y)=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}
$$

We read $\nabla f(x, y)$ as "del f ". Another notation for the gradient is grad $\mathrm{f}(\mathrm{x}, \mathrm{y})$. $\nabla f(x, y)$ is a vector in the plane, not a vector in space.

4. Theorem 12.10: Alternative Form of the Directional Derivative

If f is a differentiable function of x and y, then the directional derivative of f in the direction of the unit vector u is

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \bullet \mathbf{u}
$$

5. Applications of the Gradient

In many applications we would like to know in which direction to move so that $f(x, y)$ increases most rapidly. This direction is called the direction of steepest ascent, and it is given by the gradient.

Theorem 12.11: Properties of the Gradient

- If $\nabla f(x, y)=\mathbf{0}$, then $D_{\mathbf{u}} f(x, y)=0$ for all \mathbf{u}.
- The direction of maximum increase of f is given by $\nabla f(x, y)$. The maximum value of $D_{\mathbf{u}} f(x, y)$ is $\|\nabla f(x, y)\|$.
- The direction of minimum increase of f is given by $-\nabla f(x, y)$. The maximum value of $D_{\mathbf{u}} f(x, y)$ is $-\|\nabla f(x, y)\|$.

Imagine a skier skiing down a mountainside. $-\nabla f(x, y)$ indicates the compass direction the skier should take to ski the path of steepest descent.

On a hot metal plate, $\nabla f(x, y)$ gives the direction of greatest temperature increase.

Just remember, the gradient will change as soon as you move from a given point.

6. Theorem 12.12: Gradient is Normal to Level Curves

If f is differentiable at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and $\nabla f\left(x_{0}, y_{0}\right) \neq \mathbf{0}$, then $\nabla f\left(x_{0}, y_{0}\right)$ is normal to the level curve at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.
7. Directional Derivative and Gradient for Three Variables

If f is a differentiable function of x, y, and z with continuous first partial derivatives. The directional derivatives of \mathbf{f} in the direction of the unit vector $\mathbf{u}=\mathbf{a} \mathbf{i}+\mathrm{b} \mathbf{j}+\mathrm{ck}$ is given by

$$
D_{\mathbf{u}} f(x, y, z)=a f_{x}(x, y, z)+b f_{y}(x, y, z)+c f_{z}(x, y, z)
$$

The gradient of \mathbf{f} is denoted to be

$$
\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}
$$

Properties of the gradient are as follows.

- $D_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \bullet \mathbf{u}$
- If $\nabla f(x, y, z)=\mathbf{0}$, then $D_{\mathbf{u}} f(x, y, z)=0$ for all \mathbf{u}.
- The direction of maximum increase of f is given by $\nabla f(x, y, z)$. The maximum value of $D_{\mathrm{u}} f(x, y)$ is $\|\nabla f(x, y, z)\|$.
- The direction of minimum increase of f is given by $-\nabla f(x, y, z)$. The maximum value of $D_{\mathrm{u}} f(x, y)$ is $-\|\nabla f(x, y, z)\|$.

