12.4: Differentials

1. Definition of Total Differential

If $x=f(x, y)$ and Δx and Δy are increments of x and y, then the differentials of the independent variables x and y are

$$
d x=\Delta x \text { and } d y=\Delta y
$$

are the total differential of the dependent variable z is

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y=f_{x}(x, y) d x+f_{y}(x, y) d y
$$

This definition can be extended to functions of three or more variables.

$$
d w=\frac{\partial w}{\partial x} d x+\frac{\partial w}{\partial y} d y+\frac{\partial w}{\partial u} d u
$$

2. Definition of Differentiable

A function f given by $z=f(x, y)$ is differentiable at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ if $\Delta \mathrm{z}$ can be expressed in the form

$$
\Delta z=f_{x}\left(x_{0}, y_{0}\right) \Delta x+f_{y}\left(x_{0}, y_{0}\right) \Delta y+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y
$$

Where both ε_{1} and $\varepsilon_{2} \rightarrow 0$ as ($\Delta \mathrm{x}, \Delta \mathrm{y}$) approach (0,0). The function f is differentiable in a region \mathbf{R} if it is differentiable at each point in R.

For small Δx and Δy, you can use the approximation $\Delta z \approx d z$.
Notice that for a function of two variable, the existence of the partial derivatives does not guarantee that the function is differentiable. See the next theorem 12.4

3. Theorem 12.4: Sufficient Condition for Differentiability

If f is a function of x and y, where f_{x} and f_{y} are continuous in an open region R, then f is differentiable on R .

4. Approximation by Differentials

For small $\Delta \mathrm{x}$ and $\Delta \mathrm{y}$, you can use the approximation $\Delta \mathrm{z} \approx \mathrm{dz}$. Recall the partial derivatives can be interpreted as the slopes of the surface in the x and y directions. That means

$$
d z=\frac{\partial z}{\partial x} \Delta x+\frac{\partial z}{\partial x} \Delta y
$$

Represents the change in the height of a plane that is tangent to the surface at the point ($\mathrm{x}, \mathrm{y}, \mathrm{f}(\mathrm{x}, \mathrm{y})$). Because a plane in space is represented by a linear equation in the variables x, y, and z , the approximation of $\Delta \mathrm{z}$ by dz is called a linear approximation.
5. A function of three variables $\mathbf{w}=\mathbf{f}(\mathbf{x}, \mathbf{y}, \mathbf{z})$ is called differentiable at $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ provided that

$$
\Delta w=f_{x} \Delta x+f_{y} \Delta y+f_{z} \Delta z+\varepsilon_{1} \Delta x+\varepsilon_{2} \Delta y+\varepsilon_{3} \Delta z
$$

Where both ε_{1} and ε_{2} and $\varepsilon_{3} \rightarrow 0$ as $(\Delta \mathrm{x}, \Delta \mathrm{y}, \Delta \mathrm{z})$ approach $(0,0)$. If f is a function of x, y, and z where f_{x}, f_{y}, f_{z} are continuous in an open region R, then f is differentiable on R .
6. Just like in Chapter 3, you can use differentials to approximate propagated error and relative error.
7. Theorem 12.5: Differentiability Implies Continuity.

