12.3: Partial Derivatives

1. Definition of Partial Derivatives of a Function of Two Variables

If $z=f(x, y)$, then the first partial derivatives of f with respect of x and y are the functions f_{x} and f_{y} defined by

$$
\begin{aligned}
& f_{x}(x, y)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x} \\
& f_{y}(x, y)=\lim _{\Delta x \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}
\end{aligned}
$$

Provided the limit exists

- To find f_{x} you consider y constant and differentiate with respect to x.
- To find f_{y}, you consider x constant and differentiate with respect to y.

2. Notation for First Partial Derivatives

For $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$, the first partial derivatives f_{x} and f_{y} are denoted by

$$
\begin{gathered}
\frac{\partial}{\partial x} f(x, y)=f_{x}(x, y)=z_{x}=\frac{\partial z}{\partial x} \\
\text { And } \\
\frac{\partial}{\partial y} f(x, y)=f_{y}(x, y)=z_{y}=\frac{\partial z}{\partial y}
\end{gathered}
$$

The first partial evaluated at the point (a, b) are denoted by

$$
\left.\frac{\partial z}{\partial x}\right|_{(a, b)}=f_{x}(a, b) \text { and }\left.\frac{\partial z}{\partial y}\right|_{(a, b)}=f_{y}(a, b)
$$

3. Informally, we say that the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ denotes the slopes of the surface in the \mathbf{x} and y directions.

4. Partial Derivatives of a Function of Three or More Variables

The concept of a partial derivative can be extended to functions of three or more variables. For instance $\mathrm{w}=\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})$, there are three partial derivatives, each formed by holding two of the variables constant. That is, to define the partial derivative of w with respect to x , consider y and z to be constant and differentiate with respect to x .

5. Higher Order Partial Derivatives

It is possible to take second, third, and higher partial derivatives, provided they exist.

- Differentiate twice with respect to $\mathrm{x}: \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}=f_{x x}$
- Differentiate twice with respect to y: $\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial y^{2}}=f_{y y}$
- Differentiate first with respect to x and then with respect to y :

$$
\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial y \partial x}=f_{x y}
$$

- Differentiate first with respect to y and then with respect to x :

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial^{2} f}{\partial x \partial y}=f_{y x}
$$

The last two are called mixed partial derivatives.

6. Theorem 12.3: Equality of Mixed Partial Derivatives

If f is a function of x and y such that $f_{x y}$ and $f_{y x}$ are continuous on an open disk R, then for every (x, y) in R,

$$
f_{x y}(x, y)=f_{y x}(x, y)
$$

