12.2 Notes: Limits and Continuity

1. Limit of a Function of Two Variables

Let f be a function of two variables defined, except possibly at ($\mathrm{x}_{0}, \mathrm{y}_{0}$), on an open disk centered at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, and let L be a real number. Then

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

If for each $\varepsilon>0$, there corresponds a $\delta>0$ such that

$$
|f(x, y)-L|<\varepsilon \text { whenever } 0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta
$$

This definition is similar to the definition of a function of a single variable. However, there is a critical difference. To determine where a limit exists for a function of a single variable, you need only test the approach from the left and right. For a function of two variables the statement $(x, y) \rightarrow\left(x_{0}, y_{0}\right)$ means that (\mathbf{x}, y) is allowed to approach (\mathbf{x}_{0}, y_{0}) from any direction. If the value of the limit is not the same for all possible approaches, or paths, the limit does not exist.

2. Definition of Continuity of a Function of Two Variables

A function f of two variables is continuous at the point $\left(\mathbf{x}_{0}, \mathbf{y}_{0}\right)$ in an open region R if $f\left(x_{0}, y_{0}\right)$ is defined and equal to the limit of $f(x, y)$ as (x, y) approaches $\left(x_{0}, y_{0}\right)$. That is

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=f\left(x_{0}, y_{0}\right)
$$

The function f is continuous in the open region \mathbf{R} if it is continuous at every point in R.

If a function is not continuous, there are two types of discontinuity: removable and nonremoveable. If you can redefine f at a singe point to make the function continuous, the discontinuity is considered removable.

3. Theorem 12.1: Continuous Functions of Two Variables

If k is a real number and f and g are continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, then the following functions are continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$.

Scalar multiple: kf
Product: fg

Sum and Difference: $\mathrm{f} \pm \mathrm{g}$
Quotient: f / g, if g does not equal 0

4. Theorem 12.2: Continuity of a Composite Function

If h is continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ and g is continuous at $\mathrm{h}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$, then the composite function given by $(g \circ h)(x, y)=g(h(x, y))$ is continuous at $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$. This is

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g\left(h(x, y)=g\left(h\left(x_{0}, y_{0}\right)\right)\right.
$$

5. Definition of Continuity of a Function of Three Variables

A function f of three variables is continuous at a point $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ in an open region R if $f\left(x_{0}, y_{0}, z_{0}\right)$ is defined and equal to the limit of $f(x, y, z)$ as (x, y, z) approaches ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$). That is

$$
\lim _{(x, y, z) \rightarrow\left(x_{0}, y_{0}, z_{0}\right)} f(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)
$$

The function f is continuous in the open region \mathbf{R} if it is continuous at every point in R.

