12.1: Introduction to Functions of Several Variable

1. Definition of a Function of Two Variables

Let D be a set of ordered pairs of real numbers. If to each ordered pair (x, y) in A there corresponds a unique real number $f(x, y)$, then f is called a function of \mathbf{x} and y. The set D is the domain of f, and the corresponding set of values for $f(x, y)$ is the range of f .

Example: $f(x, y)=x^{2} y^{2}+x$
For a function give by $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y}), \mathrm{x}$ and y are called the independent variables and z is called the dependent variable.
2. Functions of several variables can be combined in the same ways as functions of single variables.

$$
\begin{aligned}
& (f \pm g)(x, y)=f(x, y)+g(x, y) \\
& (f g)(x, y)=f(x, y) g(x, y) \\
& \frac{f}{g}(x, y)=\frac{f(x, y)}{g(x, y)} \\
& (g \circ h)(x, y)=g(h(x, y))
\end{aligned}
$$

A function that can be expressed as a sum of functions of the form $c x^{m} y^{n}$ is called a polynomial function of two variables. A rational function is the quotient of two polynomial functions.
3. The graph of a function f of two variables can be interpreted geometrically as a surface in space. To sketch a surface in space by hand, it helps to use traces in the planes parallel to the coordinate planes.

4. Level Curves

A second way to visualize a function of two variables is to use a scalar field in which the scalar $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ is assigned a point (x, y). A scalar field can be characterized by level curves (or contour lines) along which the value of $f(x, y)$ is contstant. See examples on page 841.

5. Level Surfaces

The concept of a level curve can be extended by one dimension to define a level surface. If f is a function of 3 variables and c is a constant, the graph of $f(x, y, z)=$ c is a level surface of the function f.

