11.3: Velocity and Acceleration

A. As an object moves along a curve in the plane, the coordinates x and y of its center of mass are each functions of time t. Rather than using f and g to represent these two functions, it is convenient to write $x=x(t)$ and $y=y(t)$. So, the position vector $\mathbf{r}(\mathrm{t})$ takes the form

$$
\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathbf{j}
$$

B. Definition of Velocity and Acceleration

If x and y are twice-differentiable functions of t, and \mathbf{r} is a vector valued function given by $\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathbf{j}$, then the velocity vector, acceleration vector, and the speed at time t are as follows.

$$
\begin{gathered}
\text { Velocity }=\mathbf{v}(\mathrm{t})=\mathbf{r}^{\prime}(\mathrm{t})=\mathrm{x}^{\prime}(\mathrm{t}) \mathbf{i}+\mathrm{y}^{\prime}(\mathrm{t}) \mathbf{j} \\
\text { Acceleration }=\mathbf{a}(\mathrm{t})=\mathbf{r}^{\prime}(\mathrm{t})=\mathrm{x}^{\prime \prime}(\mathrm{t}) \mathbf{i}+\mathrm{y}^{\prime}(\mathrm{t}) \mathbf{j} \\
\text { Speed }=\|\mathbf{v}(\mathrm{t})\|=\left\|\mathbf{r}^{\prime}(\mathrm{t})\right\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}}
\end{gathered}
$$

C. For motion along a space curve, the definitions are similar. That is if

$$
\begin{gathered}
\mathbf{r}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathbf{i}+\mathrm{y}(\mathrm{t}) \mathbf{j}+\mathrm{z}(\mathrm{t}) \mathbf{k} \\
\text { Velocity }=\mathbf{v}(\mathrm{t})=\mathbf{r}^{\prime}(\mathrm{t})=\mathrm{x}^{\prime}(\mathrm{t}) \mathbf{i}+\mathrm{y}^{\prime}(\mathrm{t}) \mathbf{j}+\mathrm{z}^{\prime}(\mathrm{t}) \mathbf{k} \\
\text { Acceleration }=\mathbf{a}(\mathrm{t})=\mathbf{r}^{\prime \prime}(\mathrm{t})=\mathrm{x}^{\prime \prime}(\mathrm{t}) \mathbf{i}+\mathrm{y}^{\prime \prime}(\mathrm{t}) \mathbf{j}+\mathrm{z}^{\prime \prime}(\mathrm{t}) \mathbf{k} \\
\text { Speed }=\|\mathbf{v}(t)\|=\left\|\mathbf{r}^{\prime}(\mathrm{t})\right\|=\sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}+\left[z^{\prime}(t)\right]^{2}}
\end{gathered}
$$

D. Projectile Motion

For a projectile of mass m, the force due to gravity is $F=-m g j$ where the gravitational constant $\mathrm{g}=32$ feet per second per second or 9.81 meters per second per second. By Newton's Second Law of Motion, this same force produces an acceleration $a=a(t)$, and satisfies the equation $F=m a$. Consequently, the acceleration of the projectile is given by $\mathrm{ma}=-\mathrm{mgj}$, which implies $\mathbf{a}=-\mathrm{g} \mathbf{j}$

The position vector can be written in the form: $\mathbf{r}(t)=-\frac{1}{2} g t^{2} \mathbf{j}+t \mathbf{v}_{o}+\mathbf{r}_{o}$

E. Theorem 11.3: Position Function for a Projectile

Neglecting air resistance, the path of a projectile launched from an initial height h with initial speed v_{o}, and the angle of elevation θ is described by the vector function

$$
\mathbf{r}(t)=\left(v_{o} \cos \theta\right) t \mathbf{i}+\left[h+\left(v_{o} \sin \theta\right) t-\frac{1}{2} g t^{2}\right] \mathbf{j}
$$

