11.2: Differentiation and Integration of Vector-Valued Functions

A. Definition of the Derivative of a Vector-Valued Function

The derivative of a vector valued function r is defined by

$$
\mathbf{r}^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{\mathbf{r}(t+\Delta t)-\mathbf{r}(t)}{\Delta t}
$$

For all t for which the limit exists. If $\mathrm{r}^{\prime}(\mathrm{c})$ exists, the r is differentiable at c . If $\mathrm{r}^{\prime}(\mathrm{c})$ exists for all c in an open interval I , then r is differentiable on the interval I . Differentiability of vector valued functions can be extended to closed intervals by considering one-sided limits.

B. Theorem 11.1: Differentiation of Vector Valued Functions

1. If $\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j}$, where f and g are differentiable functions of t , then

$$
\mathbf{r}(\mathrm{t})=\mathrm{f}^{\prime}(\mathrm{t}) \mathbf{i}+\mathrm{g}^{\prime}(\mathrm{t}) \mathbf{j}
$$

2. If $\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j}+\mathrm{h}(\mathrm{t}) \mathbf{k}$, where f, g, and h are differentiable functions of t , then

$$
\mathbf{r}(\mathrm{t})=\mathrm{f}^{\prime}(\mathrm{t}) \mathbf{i}+\mathrm{g}^{\prime}(\mathrm{t}) \mathbf{j}+\mathrm{h}^{\prime}(\mathrm{t}) \mathbf{k}
$$

Higher order derivatives of vector-valued functions are obtained by successive differentiation of each component function.
C. The parameterization of the curve represented by the vector-valued function

$$
\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j}+\mathrm{h}(\mathrm{t}) \mathbf{k}
$$

is smooth on an open interval I if $\mathrm{f}^{\prime}, \mathrm{g}^{\prime}$, and h^{\prime} are continuous on I and $\mathrm{r}^{\prime}(\mathrm{t}) \neq 0$ for any value of t in the interval I.

D. Theorem 11.2: Properties of the Derivative

$$
\begin{aligned}
& D_{t}[c \mathbf{r}(t)]=c \mathbf{r}^{\prime}(t) \\
& D_{t}[\mathbf{r}(t) \pm \mathbf{u}(t)]=\mathbf{r}^{\prime}(t) \pm \mathbf{u}^{\prime}(t) \\
& D_{t}[f(t) \mathbf{r}(t)]=f(t) \mathbf{r}^{\prime}(t)+f^{\prime}(t) \mathbf{r}(t) \\
& D_{t}[\mathbf{r}(t) \bullet \mathbf{u}(t)]=\mathbf{r}(t) \bullet \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \bullet \mathbf{u}(t) \\
& D_{t}[\mathbf{r}(t) \times \mathbf{u}(t)]=\mathbf{r}(t) \times \mathbf{u}^{\prime}(t)+\mathbf{r}^{\prime}(t) \times \mathbf{u}(t) \\
& D_{t}[\mathbf{r}(f(t))]=\mathbf{r}^{\prime}(f(t)) f^{\prime}(t) \\
& \text { If } \mathbf{r}(t) \bullet \mathbf{r}(t)=c, \text { then } \mathbf{r}(t) \bullet \mathbf{r}^{\prime}(t)=0
\end{aligned}
$$

E. Definition of Integration of Vector Valued Functions

1. If $\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j}$, where f and g are continuous on $[\mathrm{a}, \mathrm{b}]$, then the indefinite integral (antiderivative) or r is

$$
\int \mathbf{r}(t) d t=\left[\int f(t) d t\right] \mathbf{i}+\left[\int g(t) d t\right] \mathbf{j}
$$

And its definite integral over the interval $[\mathrm{a}, \mathrm{b}]$ is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}
$$

2. If $\mathbf{r}(\mathrm{t})=\mathrm{f}^{\prime}(\mathrm{t}) \mathbf{i}+\mathrm{g}^{\prime}(\mathrm{t}) \mathbf{j}+\mathrm{h}^{\prime}(\mathrm{t}) \mathbf{k}$, where f, g, and h are continuous on $[\mathrm{a}, \mathrm{b}]$ then the indefinite integral (antiderivative) of r is

$$
\int \mathbf{r}(t) d t=\left[\int f(t) d t\right] \mathbf{i}+\left[\int g(t) d t\right] \mathbf{j}+\left[\int h(t) d t\right] \mathbf{k}
$$

And its definite integral over the interval $[\mathrm{a}, \mathrm{b}]$ is

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) d t\right] \mathbf{k}
$$

