11.1: Vector-Valued Functions

A. A space curve C is the set of all ordered triples $(f(t), g(t), h(t))$ together with their defining parametric equations: $x=f(t) y=g(t) z=h(t)$ where f, g, and h are continuous functions of t on an interval I.

B. Definition of a Vector-Valued Function

A function in the form :

$$
\begin{gathered}
\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j} \quad \text { (Plane) } \\
\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j}+\mathrm{h}(\mathrm{t}) \mathbf{k} \quad(\text { Space })
\end{gathered}
$$

is a vector valued function, where the component functions f, g, and h are realvalued functions of the parameter t . Vector valued functions are sometimes denoted as

$$
\begin{aligned}
& \mathbf{r}(t)=\langle f(t), g(t)\rangle \\
& \mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle
\end{aligned}
$$

C. Be sure to see the distinction between vector-valued functions r and the realvalued functions f, g, and h. All are functions of the real variable t, but $r(t)$ is a vector, whereas $f(t), g(t)$, and $h(t)$ are real numbers for each value of t.

If t represents time, you can use vector valued functions to represent motion along a curve. You can use vector-valued functions to trace the graph of a curve. The terminal point of the position vector $\mathbf{r}(\mathrm{t})$ coincides with the point (x, y) or ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) on the curve given by the parametric equations. The arrowhead on the curve indicates the curves orientation by pointing in the direction of increasing values of t.

The domain of a vector-valued function is considered to be the intersection of the domains of f, g, and h .
D. A spiral up a cylinder produces a helix.
E. To find a vector valued function given an equation in rectangular form, you must find a set of parametric equations for the graph and then rewrite in vector-valued function form.
F. Many of the techniques like adding, subtracting, and scalar multiplication used for real-valued functions can be applied to vector valued functions as well.

G. Definition of the Limit of Vector-Valued Functions:

1. If \mathbf{r} is a vector-valued function such that $\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j}$, then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}
$$

Provided f and g have limits as t approaches a
2. 2. If \mathbf{r} is a vector-valued function such that $\mathbf{r}(\mathrm{t})=\mathrm{f}(\mathrm{t}) \mathbf{i}+\mathrm{g}(\mathrm{t}) \mathbf{j}+\mathrm{h}(\mathrm{t}) \mathbf{k}$ then

$$
\lim _{t \rightarrow a} \mathbf{r}(t)=\left[\lim _{t \rightarrow a} f(t)\right] \mathbf{i}+\left[\lim _{t \rightarrow a} g(t)\right] \mathbf{j}+\left[\lim _{t \rightarrow a} h(t)\right] \mathbf{k}
$$

Provided f and g have limits as t approaches a

H. Definition of Continuity of a Vector Valued Function

A vector-valued function r is continuous at the point given by $t=a$ if the limit of $\mathrm{r}(\mathrm{t})$ exists as t approaches a and $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{r}(a)$.

A vector-valued function \mathbf{r} is continuous on an interval I if it is continuous at every point in the interval.

