10.7: Cylindrical and Spherical Coordinates

A. The Cylindrical Coordinate System

In a cylindrical coordinate system, a point P in space is represented by an ordered triple (r,θ,z) .

- 1. (r,θ) is a polar representation of the projection of P in the xy-plane.
- 2. z is the directed distance from (r,θ) to P.

B. Change between rectangular to cylindrical coordinates

1. Cylindrical to rectangular:

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

2. Rectangular to cylindrical:

$$r^{2} = x^{2} + y^{2}$$
$$\tan \theta = \frac{y}{x}$$
$$z = z$$

The point (0,0,0) is called the pole. Like polar coordinates, cylindrical coordinates are not unique.

C. The Spherical Coordinate System

In a spherical coordinate system, a point P in space is represented by an ordered triple (ρ, θ, ϕ) .

- 1. ρ is the distance between P and the origin, $\rho \ge 0$.
- 2. θ is the same angle used in cylindrical coordinates for $r \ge 0$.
- 3. φ is the angle between the positive z-axis and the line segment \overrightarrow{PQ} , $0 \le \varphi \le \pi$.

Note that the first and third coordinates, ρ and ϕ , are nonnegative. P is the lowercase Greek letter rho, and ϕ is the lowercase Greek letter phi.

D. Change between rectangular to spherical coordinates

1. Spherical to rectangular:

$$x = \rho \sin \phi \cos \theta$$
$$y = \rho \sin \phi \sin \phi$$
$$z = \rho \cos \phi$$

2. Rectangular to Spherical:

$$\rho^{2} = x^{2} + y^{2} + z^{2}$$
$$\tan \theta = \frac{y}{x}$$
$$\phi = \arccos\left(\frac{z}{\sqrt{x^{2} + y^{2} + z^{2}}}\right)$$

E. Change coordinates between cylindrical and spherical systems

Spherical to cylindrical $(r \ge 0)$:

$$r^{2} = \rho^{2} \sin^{2} \phi$$
$$\theta = \theta$$
$$z = \rho \cos \phi$$

Cylindrical to spherical $(r \ge 0)$:

$$\rho = \sqrt{r^2 + z^2}$$

$$\theta = \theta$$

$$\phi = \arccos\left(\frac{z}{\sqrt{r^2 + z^2}}\right)$$