10.7: Cylindrical and Spherical Coordinates

A. The Cylindrical Coordinate System

In a cylindrical coordinate system, a point P in space is represented by an ordered triple (r, θ, z).

1. (r, θ) is a polar representation of the projection of P in the xy-plane.
2. z is the directed distance from (r, θ) to P.

B. Change between rectangular to cylindrical coordinates

1. Cylindrical to rectangular:

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

2. Rectangular to cylindrical:

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& \tan \theta=\frac{y}{x} \\
& z=z
\end{aligned}
$$

The point $(0,0,0)$ is called the pole. Like polar coordinates, cylindrical coordinates are not unique.

C. The Spherical Coordinate System

In a spherical coordinate system, a point P in space is represented by an ordered triple (ρ, θ, ϕ).

1. ρ is the distance between P and the origin, $\rho \geq 0$.
2. θ is the same angle used in cylindrical coordinates for $r \geq 0$.
3. φ is the angle between the positive z-axis and the line segment $\overrightarrow{P Q}$, $0 \leq \varphi \leq \pi$.

Note that the first and third coordinates, ρ and φ, are nonnegative. P is the lowercase Greek letter rho, and φ is the lowercase Greek letter phi.
D. Change between rectangular to spherical coordinates

1. Spherical to rectangular:

$$
\begin{aligned}
& x=\rho \sin \phi \cos \theta \\
& y=\rho \sin \phi \sin \\
& z=\rho \cos \phi
\end{aligned}
$$

2. Rectangular to Spherical:

$$
\begin{aligned}
& \rho^{2}=x^{2}+y^{2}+z^{2} \\
& \tan \theta=\frac{y}{x} \\
& \phi=\arccos \left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
\end{aligned}
$$

E. Change coordinates between cylindrical and spherical systems

Spherical to cylindrical ($\mathrm{r} \geq 0$):

$$
\begin{aligned}
& r^{2}=\rho^{2} \sin ^{2} \phi \\
& \theta=\theta \\
& z=\rho \cos \phi
\end{aligned}
$$

Cylindrical to spherical ($\mathrm{r} \geq 0$):

$$
\begin{aligned}
& \rho=\sqrt{r^{2}+z^{2}} \\
& \theta=\theta \\
& \phi=\arccos \left(\frac{z}{\sqrt{r^{2}+z^{2}}}\right)
\end{aligned}
$$

