10.3: The Dot Product of Two Vectors

A. Definition of Dot Product

The dot product of \(\mathbf{u} = \langle u_1, u_2 \rangle \) is \(\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 \)

The dot product of \(\mathbf{u} = \langle u_1, u_2, u_3 \rangle \) is \(\mathbf{u} \cdot \mathbf{v} = u_1v_1 + u_2v_2 + u_3v_3 \)

Note: The dot product of two vectors yields a scalar, it is also called the inner product or scalar product of two vectors.

B. Theorem 10.4: Properties of the Dot Product

1. \(\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u} \)
2. \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \)
3. \(c(\mathbf{u} \cdot \mathbf{v}) = c\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot c\mathbf{v} \)
4. \(\mathbf{0} \cdot \mathbf{v} = 0 \)
5. \(\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 \)

C. Theorem 10.5: Angle Between Two Vectors

If \(\theta \) is the angle between two nonzero vectors \(\mathbf{u} \) and \(\mathbf{v} \), then

\[
\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
\]

This can be rewritten as \(\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\|\|\mathbf{v}\|\cos \theta \) to find the dot product if \(\theta \) is know.

Note: The terms perpendicular and orthogonal and normal all mean essentially the same thing. However, we usually say two vectors are orthogonal, two lines are perpendicular, and a vector is normal to a given line or plan.
D. In space it is convenient to measure direction in terms of the angles between the nonzero vector \(v \) and the three unit vectors \(i, j, \) and \(k \). The angles \(\alpha, \beta, \) and \(\gamma \) are the direction angles of \(v \), and \(\cos \alpha, \cos \beta, \) and \(\cos \gamma \) are the direction cosines of \(v \).

\[
\cos \alpha = \frac{v_1}{\|v\|} \\
\cos \beta = \frac{v_2}{\|v\|} \\
\cos \gamma = \frac{v_3}{\|v\|}
\]

E. Definition of Projection and Vector Components

Let \(u \) and \(v \) be nonzero vectors. Moreover, let \(u = w_1 + w_2 \), where \(w_1 \) is parallel to \(v \) and \(w_2 \) is orthogonal to \(v \).

1. \(w_1 \) is called the projection of \(u \) onto \(v \) or the vector component of \(u \) along \(v \), and is denoted by \(w_1 = \text{proj}_v u \).
2. \(w_2 = u - w_1 \) is called the vector component of \(u \) orthogonal to \(v \).

See page 739

F. Theorem 10.6: Projection Using the Dot Product

If \(u \) and \(v \) are nonzero vectors, then the projection of \(u \) onto \(v \) is given by

\[
\text{proj}_v u = \left(\frac{u \cdot v}{\|v\|^2} \right) v
\]

The projection of \(u \) onto \(v \) can be written as a scalar multiple of a unit vector in the direction of \(v \). The scalar is called the component of \(u \) in the direction of \(v \).

G. Definition of Work

The work \(W \) done by a constant force \(F \) as its point of application moves along vector \(PQ \) is given by either of the following.

1. \(W = \| \text{proj}_{PQ} F \| \|PQ\| \) Projection Form
2. \(W = F \cdot \overrightarrow{PQ} \) Dot Product Form