A. Definition of Dot Product

$\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$
The dot product of $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is $\mathbf{u} \bullet \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}$

$$
\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle
$$

The dot product of $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ is $\mathbf{u} \bullet \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$
Note: The dot product of two vectors yields a scalar, it is also called the inner product or scalar product of two vectors.

B. Theorem 10.4: Properties of the Dot Product

1. $\mathbf{u} \bullet \mathbf{V}=\mathbf{v} \bullet \mathbf{u}$
2. $\mathbf{u} \bullet(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
3. $c(\mathbf{u} \bullet \mathbf{v})=c \mathbf{u} \bullet \mathbf{v}=\mathbf{u} \bullet c \mathbf{v}$
4. $\mathbf{O} \bullet \mathbf{v}=0$
5. $\mathbf{v} \bullet \mathbf{v}=\|\mathbf{v}\|^{2}$

C. Theorem 10.5: Angle Between Two Vectors

If θ is the angle between two nonzero vectors \mathbf{u} and \mathbf{v}, then

$$
\cos \theta=\frac{\mathbf{u} \bullet \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}
$$

This can be rewritten as $\mathbf{u} \bullet \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta$ to find the dot product if θ is know.

Note: The terms perpendicular and orthogonal and normal all mean essentially the same thing. However, we usually say two vectors are orthogonal, two lines are perpendicular, and a vector is normal to a given line or plan.
D. In space it is convenient to measure direction in terms of the angles between the nonzero vector \mathbf{v} and the three unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k}. The angles α, β, and γ are the direction angles of \mathbf{v}, and $\cos \alpha, \cos \beta$, and $\cos \gamma$ are the direction cosines of v.

$$
\begin{aligned}
& \cos \alpha=\frac{v_{1}}{\|\mathbf{v}\|} \\
& \cos \beta=\frac{v_{2}}{\|\mathbf{v}\|} \\
& \cos \gamma=\frac{v_{3}}{\|\mathbf{v}\|}
\end{aligned}
$$

E. Definition of Projection and Vector Components

Let \mathbf{u} and \mathbf{v} be nonzero vectors. Moreover, let $\mathbf{u}=\mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}$, where $\mathbf{w}_{\mathbf{1}}$ is parallel to \mathbf{v} and \mathbf{w}_{2} is orthogonal to \mathbf{v}.

1. $w 1$ is called the projection of \mathbf{u} onto \mathbf{v} or the vector component of \mathbf{u} along \mathbf{v}, and is denoted by $\mathbf{w}_{1}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.
2. $\mathbf{w}_{2}=\mathbf{u}-\mathbf{w}_{1}$ is called the vector component of \mathbf{u} orthogonal to \mathbf{v}.

See page 739

F. Theorem 10.6: Projection Using the Dot Product

If \mathbf{u} and \mathbf{v} are nonzero vectors, then the projection of \mathbf{u} onto \mathbf{v} is given by

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^{2}}\right) \mathbf{v}
$$

The projection of \mathbf{u} onto \mathbf{v} can be written as a scalar multiple of a unit vector in the direction of \mathbf{v}. The scalar is called the component of \mathbf{u} in the direction of \mathbf{v}.

G. Definition of Work

The work W done by a constant force F as its point of application moves along vector PQ is given by either of the following.

1. $W=\left\|\operatorname{proj}_{\overline{P Q}} \mathbf{F}\right\|\|\overrightarrow{P Q}\|$ Projection Form
2. $W=\mathbf{F} \bullet \overrightarrow{P Q}$ Dot Product From
