10.2: Space Coordinates and Vectors in Space

A. The three-dimensional coordinate system is constructed by passing a z -axis perpendicular to the x and y axes at the origin. Taken as pairs the axes determine three coordinate planes: the xy-plane, the xzplane, and the yz-plane. These coordinate planes separate three-space into 8 octants.
B. A point in space is determined by ordered triples ($\mathbf{x}, \mathbf{y}, \mathbf{z}$) where x, y, and z are as follows.

$$
\begin{aligned}
& \mathrm{x}=\text { directed distance from the yz-plane to } \mathrm{P} \\
& \mathrm{y}=\text { directed distance from the xy-plane to } \mathrm{P} \\
& \mathrm{z}=\text { directed distance from the xy-plane to } \mathrm{P}
\end{aligned}
$$

* We will use a right-handed system in class, not a left-handed system.
C. Many of the formulas established for the two-dimensions system can be extended to 3 dimensions.

Distance between to point: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
A sphere centered at ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) and radius r can be found using the distance formula. The standard equation of a sphere is:

$$
\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}=r^{2}
$$

The midpoint of a line segment with endpoints $\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ has coordinates

$$
\begin{aligned}
& \quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right) \\
& \mathbf{i}=\langle 1,0,0\rangle
\end{aligned}
$$

D. Using unit vectors $\mathbf{j}=\langle 0,1,0\rangle$ the standard unit vector notation for v is

$$
\begin{aligned}
\mathbf{k}= & \langle 0,0,1\rangle \\
& \mathbf{v}=\mathrm{v}_{1} \mathbf{i}+\mathrm{v}_{2} \mathbf{j}+\mathrm{v}_{3} \mathbf{k}
\end{aligned}
$$

E. Vectors in Space: See page 729

