
Section 9.5:  Area and Arc Length in Polar 
Coordinates 

 
A. Theorem 9.13 – Area in Polar Coordinates 
 If f is continuous and nonnegative on the interval 
[α,β], 0 2β α π< − ≤ , then the area of the region bounded 
by ( )r f θ= between the radial lines θ = α  and is θ = β 

 
 
, 0 2β α π< − ≤  
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Examples:  2, 4, 10 
 

B.  Finding points of intersection of two polar 
equations. 

1. Set each equation solved for r equal to each other. 
2. To find all points of intersection you will probably have 

to do more 
 

 Using a negative r and θ +π  for θ, rewrite one of 
the equations and solve again. 
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 Analyze the graph and see if they pass through the 
pole.  (0, 0) is a pt of intersection if they both pass 
through the pole. 

3. Be careful when finding the corresponding r values. 
 
Examples:  14, 18, (30) 

 
 
C.  Theorem 9.14 – Arc Length of a Polar Curve 
 Let f be a function whose derivative is continuous on 
an interval [α,β]. The length of the graph of ( )r f θ= from 
θ = α  and is θ = β  is 
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Example: 44 

D.  Theorem 9.15 – Area of a Surface of Revolution 
 Let f be a function whose derivative is continuous on 
an interval [α,β].  The area of the surface formed by 
revolving the graph of ( )r f θ= from θ = α  and θ = β  
about the indicated line is  
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2.  About the line  θ = π/2: 

[ ] [ ]2 22 ( )cos ( ) '( )S f f f d
β

α

π θ θ θ θ θ= +∫  

Example:  52 


