Section 8.6: The Ratio and Root Tests

- A. Algebra Review: Factorials
 - n! = (n)(n-1)(n-2)...(3)(2)(1)
 - 0! = 1

B. Convergence and Divergence Tests (Cont.)

9. **Theorem 8.17 – Ratio Test:** Let $\sum_{n=1}^{\infty} a_n$ be a series with nonzero terms.

•
$$\sum_{n=1}^{\infty} a_n$$
 converges absolutely if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$
• $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$

• The Ratio Test is inconclusive if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$

Examples: 14, 16, 30

10. Theorem 8.18 – The Root Test: Let $\sum_{n=1}^{\infty} a_n$ be a series.

• $\sum_{n=1}^{\infty} a_n$ converges absolutely if $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$

•
$$\sum_{n=1}^{\infty} a_n$$
 diverges if $\lim_{n \to \infty} \sqrt[n]{|a_n|} > 1$ or $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \infty$

• The Root Test is inconclusive if $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$

Examples: 36, 40

C. Guidelines for Testing A Series for Convergence or Divergence.

- 1. Does the nth term approach 0? If not, the series diverges.
- 2. Is the series one of the special types: geometric, pseries, telescoping, or alternating?
- 3. Can the Integral Test, the Root Test, or the Ratio Test be applied?
- 4. Can the series be compared favorably to one of the special types?

C. See page 602 for a summary of Tests for Series.

Other examples: 44, 46, 48, 52