
Section 8.5:  Alternating Series 
 

A.  Convergence and Divergence Tests (Cont.) 
 

8. Theorem 8.14 – Alternating Series Test:  Let an > 0. 
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 Examples:  10, 12, 20  
 

Absolute vs Conditional Convergence 
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Examples:  42, 44, 46 
 
 

B.  Theorem 8.15:  If a convergent alternating series 

satisfies the condition 1n na a+ ≤ , then the absolute value 
of the remainder RN involved in approximating the sum of 
S by SN is less than or equal to the first neglected term. 
  



 1N N NS S R a +− = ≤  
 

 You can approximate an infinite sum by a partial sum 
from by calculating the following 

1 1n n n nS a S S a+ +≤ ≤ ±∓  
 If an+1 is negative then you would subtract to find the 
upper bound and add to find the lower bound. 

 
Examples: 30, 36 

 


