Section 8.3: The Integral Test and p-Series

- A. Convergence and Divergence Tests (Cont.)
 - 4. Theorem 8.10 Integral Test: If f is positive, continuous, and decreasing for $x \ge 1$ and $a_n = f(n)$,

hen
$$\sum_{n=1}^{\infty} a_n$$
 and $\int_{1}^{\infty} f(x) dx$

either both converge or both diverge. Examples: 2, 6, 8

- 5. Theorem 8.11 p-Series Test: The p-series $\sum_{p=1}^{\infty} \frac{1}{p^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \dots$
 - If p > 1, then the series converges
 - If $p \le 1$, then the series diverges
- **B.** Additional Ideas

t

- When p = 1: $\sum_{n=1}^{\infty} \frac{1}{n}$ is called the harmonic series.
- $\lim_{n \to \infty} \frac{1}{n} = 0$, converges as a sequence, but $\sum_{n=1}^{\infty} \frac{1}{n} \to \infty$ and diverges as a series. Examples: 14, 18

C. If $\sum_{n=1}^{\infty} a_n$ converges to S, then the remainder $R_N = S - S_N$ is bounded by $0 \le R_N \le \int_{-\infty}^{\infty} f(x) dx$.

Examples: 38, (46) Other Examples: 54, 56, 60, 62