
Section 8.3:  The Integral Test and p-Series 
 

A.  Convergence and Divergence Tests (Cont.) 
 

4. Theorem 8.10 - Integral Test:  If f is positive, 
continuous, and decreasing for x ≥ 1 and an = f(n), 

then              
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 either both converge or both diverge. 
 Examples:  2, 6, 8 
 

5. Theorem 8.11 - p-Series Test:  The p-series 
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 If p > 1, then the series converges 
 If p ≤ 1, then the series diverges 

B.  Additional Ideas 

 When p = 1:  
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and diverges as a series. 
 Examples:  14, 18 
 

C.  If 
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Examples:  38, (46) 
Other Examples:  54, 56, 60, 62 


