A.
$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \ldots + a_n + \ldots$$
 is an infinite series.

B. Definition of Convergent and Divergent Series

For the infinite series $\sum a_n$, the **nth partial sum** is given by

$$S_n = \sum_{n=1}^N a_n = a_1 + a_2 + a_3 + \dots + a_n$$

If the sequence of partial sums converges to S, then the series **converges**. The limit S is called the **sum of the series**.

$$S = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

If {S_n} diverges, then the series diverges. Examples: 4, 6

C. Convergence and Divergence Tests

- 1. Theorem 8.6: Geometric Series Test, $\sum_{n=0}^{\infty} ar^n$ a geometric series.
 - If $|\mathbf{r}| < 1$, the series converges to $\frac{a}{1-r}$
 - If $|\mathbf{r}| \ge 1$, the series diverges

Example: 10, 24, 30

2. Theorem 8.9: Divergent Test: Consider the series, $\sum_{n=1}^{\infty} a_n$

- If $\lim_{n\to\infty} a_n \neq 0$, then the series diverges
- If $\lim_{n \to \infty} a_n = DNE$, then the series diverges
- If $\lim_{n\to\infty} a_n = 0$, no conclusion can be made. However if the series does converge, then $\lim_{n\to\infty} a_n = 0$.

Examples: 14, 16

3. Telescoping Series are of the form (b1 - b2) + (b2 - b3) + (b3 - b4) + (b4 - b5) + ...

 The series will only converge if and only if bn approaches a finite number as n approaches infinity.

Examples: 36, 54, 56, 74

D. Writing repeating decimals as a geometric series and find the infinite sum.