Section 6.6: Moments, Centers of Mass, and Centroids

- A. There are several applications of integration that are related to mass.
 - Force = (mass)(acceleration)
- B. Moments and Center of Mass: One-Dimensional System Let the point masses m_1, m_2, \ldots, m_n be located at x_1, x_2, \ldots, x_n .
 - 1. The moment about the origin is $M_0 = m_1x_1 + m_2x_2 + \dots + m_nx_n$.
 - 2. The center of mass is $\bar{x} = \frac{M_o}{m}$, where $m = m_1 + m_2 + \dots + m_n$ is the **total mass** of the system.
 - If $M_o = 0$, then the system is said to be in equilibrium.

Examples: 2, 4

C. Moments and Center of Mass: Two Dimensional System

Let the point masses m_1, m_2, \ldots, m_n be located at $(x_1,y_1), (x_2,y_2), \ldots, (x_ny_n)$.

- 1. The moment about y-axis is $M_y = m_1x_1 + m_2x_2 + ... + m_nx_n$.
- 2. The moment about the x-axis is $M_x = m_1y_1 + m_2y_2 + \dots + m_ny_n$.

3. The center of mass (\bar{x}, \bar{y}) or center or gravity is

$$\overline{x} = \frac{M_y}{m}$$
 $\overline{y} = \frac{M_x}{m}$

where $m = m_1 + m_2 + ... + m_n$ is the **total mass** of the system.

Example: 10

D. Moments and Center of Mass of a Planar Lamina

Let f and g be continuous functions such that $f(x)\ge g(x)$ on [a,b], and consider the planar lamina of uniform density p bounded by the graphs of y = f(x), y = g(x), and $a\le x\le b$.

1. The moments about and x and y axis are

$$M_{x} = p \int_{a}^{b} \left[\frac{f(x) + g(x)}{2} \right] [f(x) - g(x)] dx$$

$$M_{y} = p \int_{a}^{b} x [f(x) - g(x)] dx$$

2. The center of mass (\bar{x}, \bar{y}) is given by $\bar{x} = \frac{M_y}{m}$ and $\bar{y} = \frac{M_x}{m}$, where $m = p \int_a^b [f(x) - g(x)] dx$ is the mass of the lamina.

E. Sometimes the center of mass is called a Centroid.

Examples: 14, 26