4.3:  Riemann Sums and Definite Integrals

A.  Definition of a Riemann Sum


Let f be defined on [a,b], and let Δ be a partition of [a,b] given by a = x0 < x1 < x2 < … <xn-1 < xn = b

Where Δxi, is the width of the ith subinterval.  If ci is any point in the ith subinterval, then the sum
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is called a Riemann sum of f for the partition Δ. 
B.  Definition of a Definite Integral


If f is defined on [a,b] and the limit  
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exists, then f is integrable on [a,b]and the limit is denoted  
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The limit is called the definite integral of f from a to b.  The number a is the lower limit or integration, and the number b is the upper limit of integration.

Note:  

· Definite Integrals do not necessarily represent Area.  Definite Integrals can be positive, negative, or zero. 

· 
[image: image5.wmf]0 implies n

D®®¥

 As the norm partition approaches 0, the number of subintervals approaches infinity.
Examples:  4,6
C.  Continuity Implies Integrability


If a function f is continuous on [a,b], then f is integrable on [a,b].

D.  Theorem 4.5:  The Definite Integral as the Area of a Region

If f is continuous and nonnegative on [a,b], then the area of the region bounded by the graph of f, the x-axis, and x=a and x=b is given by


[image: image6.wmf]Area ()

b

a

fxdx

=

ò


Examples:  18,20,24,30
E.   Properties of Definite Integrals  (see pages 304-306)

Examples: 42,45
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