2.4:  Continuity and One-Sided Limits

A.  Definition of Continuity  (p86):

· Continuity at a Point:  A function f is continuous at c if the following 3 conditions are met.

1.   f(c) is defined.

2.     
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· Continuity on an Open Interval:  A function is continuous on an open interval (a,b) if it is continuous at every point in the interval.  A function that is continuous on the entire real line (-∞ , ∞) is everywhere continuous. 
B.   Discontinuity:  Consider an open interval that contains a real number c.  If a function is defined on I (except possibly at c), and f is not continuous at c, the f is said to have a discontinuity at c.  Discontinuities fall into two categories:
· Removable Discontinuity:  If f can be made continuous by appropriately defining or redefining f(c)
· Nonremovable Discontinuity:  f can not be made continuous by redefining f(c)

(occurs when the limit does not exist at c)
C.  One-Sided Limits and Continuity on a Closed Interval (p88)
· The limit from the right means that x approaches c from values greater than c.  This is denoted as 
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· The limit from the left means that x approaches c from values less than c.  This is denoted as  
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· The existence of a one-sided limit allows you to extend the definition of continuity to closed intervals.  A function is continuous on a closed interval if it is continuous in the interior of the interval and possesses one-sided continuity at the endpoints.
D.  Theorem 1.10:  The Existence of a Limit     (p89)
· Let f be a function and let c and L be real numbers.  The limit of f(x) as x approaches c is L if and only if
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   and   
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E. Definition of Continuity on a Closed Interval  (p89)
· A function f is continuous on a closed interval [a, b] if it is continuous on the open interval (a, b) and 
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  and  
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The function f is continuous from the right at a and continuous from the left at b.

F. Theorem 1.11:  Properties of Continuity  (see details on page 91)

· The following types of functions are continuous at every point in their domain:  polynomial functions, rational functions, radical functions, trigonometric functions, exponential and logarithmic functions.
G. Continuity of a Composite Function (p91)

· If g is continuous at c and f is continuous at g(c), then the composite function given by 
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 is continuous at c.
H. Intermediate Value Theorem

· If f is continuous on the closed interval [a, b] and k is any number between f(a) and f(b), then there is at least one number c in [a,b] such that f(c) = k.  
The intermediate value theorem tells you that at least one c exists, but it does not give a method for find c.  Such theorems are called existence theorems.   
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