1. **Viral size and organization**
 - **Size**
 - 20-250nm
 - 0.000000002m-0.000000025m
 - **Virion structure**
 - Capsid
 - Core
 - **Acellular obligate intracellular parasites**
 - Lack organelles, metabolic activities, and reproduction
 - Replicated by live host cells

2. **Size comparison**

3. **Viral sizes table**

4. **Host specificity**
 - **Type of host organism is specific**
 - Specific host required for infection
 - **Examples of host specificity**
 - Animal, plant, bacteria
 - Mammalian, Human
 - **Host Tropism**
 - Highly Specific relationship between tissue or cell type and virus ligand
 - HIV - leukocytes, CD4 receptor
 - Rabies – neurons, Acetylcholine receptor
 - Herpes viruses – Nerve growth factor receptor

5. **Viral diversity photos**

6. **Viral external structures**
 - **Envelope**
 - Host membrane – outside of the capsid
 - identity and immune proteins
 - **Capsid**
 - Repeated protein coat
 - Naked – without envelope
 - **Spike**
 - **Ligand**
 - Protein attachment structures for host receptors
 - Host membrane receptors, proteins, or glycopalyx are attachment sites
 - **Enzyme ligand**
 - Metabolizes external host barriers

7. **Viral structure image**

8. **Rubella**
 SARS

9. **Animal viral spikes**
 Bacterial viral spikes

10. **Viral Core**
 - Everything interior to the capsid
• Single RNA or DNA chromosome
 – Ranges from 4 to 200 genes
 – RNA viruses subject to rapid mutation changes
• Core enzymes – RNA viruses
 – Nucleic acid polymerase enzymes
 • attached to the chromosome to initiate replication of new chromosomes

11 Viral core enzymes

12 Viral classification or naming
• Historical
 – Pox, influenza, measles, herpes
• Mode or source of transmission
 – Arbo = forest > insect transmitted
 • West Nile Virus
 • Dengue Fever Virus
• Clinical properties
 – HIV, SARS, encephalitis, hepatitis
• Anatomical or Physical properties
 – Chromosome type - DNA or RNA
 – Size and appearance
 • picorna (polio), corona (SARS)

13 Arbovirus Transmission mode

14 Arboviruses

15 Arbovirus disease map

16 Medically important DNA viruses
• Pox
 – Small pox (variola)
 – Cowpox (vaccinia)
 – Monkeypox
• Herpes
 – Cytomegalovirus (CMV)
 – Epstein-Barr
 – Varicella (chickenpox)
 – HSV1,2
• See DNA virus Table

17 Medically important DNA viruses

18 Child with Smallpox photo

19 Hepatitis B particles HepB Pathology

20 Herpes Simplex 1 virus HSV1 lesion

21 Medically important RNA viruses
• Picorna – Polio, HepA, Rhino
• Paramyxo – Rubeola, Mumps, RSV
• Toga - Rubella - Adult or German measles
• Flavi – Hep C
• Retro – HIV, HTLV
• Rhabdo
• See RNA viruses Table 1 and 2

Medically important RNA viruses table 1
Child with Polio paralysis photo
1930-40’s Polio epidemic
Medically important RNA viruses 2

Viral replication events overview
• Attachment and Entry
 – Uncoating of capsid from enveloped viruses
• Replication
 – Chromosome
 – Capsid
• Assembly and Release
 – Inside host cell
 – On membrane

Viral replication model image

Viral Attachment and Entry
• Three modes
• Adsorption – naked viruses
 – Capsid or spike proteins attach to host membrane
 – Viral plasmid admitted into cell
 – Capsid remains external
• Fusion - enveloped
 – Envelope spikes attach to receptors and fuses with host membrane
 – Capsid admitted into cell
• Receptor-mediated endocytosis - enveloped
 – Envelope spikes attach to host membrane receptors
 – Endocytosis response
 – Entire enveloped virus admitted into cell

Viral Entry modes image

Naked virus Entry
Enveloped virus Entry
HIV receptor attachment image
Endocytosis entry into host photo

Influenza spikes
• Two step entry
• Neuraminidase
 – Enzyme ligand
 – digests host glycocalyx
• Hemagglutinin
– Attachment ligand
– Growth hormone receptors

35. Hemagglutination
Used to ID viruses with hemagglutinin

36. Viral Plasmid Replication
• Plasmid is uncoated from capsid
• Viral plasmid copies are made
 – Viral core enzymes initiate replication (RNA) OR
 – Host cell enzymes initiate replication (DNA)
• Replication occurs in the cytoplasm or nucleus

37. DNA viral chromosome
• Viral DNA chromosome is used as a template to synthesize new viral DNA chromosomes
• Viral DNA > DNA synthesis > New viral DNA chromosomes

38. RNA viral chromosome
• Viral RNA chromosome is used as a template to synthesize new viral DNA chromosomes
 – Reverse Transcriptase (RT)
• Viral DNA is then a template for new viral RNA chromosome synthesis
 – Viral DNA may be a transposon in host DNA
• Viral RNA > RT > Viral DNA chromosome > Viral RNA chromosome

39. Lysogeny
• Genetic transformation of host
 – Viral chromosome is a permanent resident of the host cell
 – Viral DNA chromosome integrated into host chromosome
 • Bacterial = Transposon
 • Eukaryotic = Provirus
 • Retroviruses
 – Viral DNA chromosome stored in cytoplasm
 • Plasmid
 • Herpes viruses

40. Cell and viral chromosomes image

41. Viral Protein Synthesis
• Viral transcription
 – Viral chromosome transcribed to mRNA
• Viral translation
 – Viral mRNA translated to a large polypeptide
• Viral protein processing
 – Viral polypeptide cleaved into separate proteins
 • Capsid
 • Spikes
 • Nucleic acid polymerases
 – Viral proteins folded and assembled together

42. Viral protein synthesis image
Viral assembly and release
- Viral assembly
 - Spikes, Capsids and Chromosomes
 - at the host outer membrane
 - in the host cytoplasm
- Viral release modes
 - Lytic (lysis = splitting or bursting)
 - Acute
 - Budding = exocytosis or secretion
 - Leads to cell death
 -Persistent, Chronic or Recurrent

Enveloped viral release

Enveloped virus budding

Viral budding photo

SARS viral particles in human lung cell photo

Viral release modes image

Bacterial viruses
- Bacterial viruses are called PHAGES
 - Specific for certain bacteria species
 - Responsible for transferring antibiotic resistance between bacteria
- Phage replication
 - Adsorption is the method of attachment to host receptors
 - Entry of viral chromosome (plasmid) only

Phage photo

Phage attachment and entry image

Phages attached to bacterial cell photo

Phage replication
- Lytic
 - Viral assembly and release cause lysis of host cell

- Lysogenic
 - Viral chromosome or plasmid is replicated and then passed on to dividing bacteria
 - Lysis may occur in any generation

Phage replication and release image

Phage lysis and lysogeny image

Phage gene recombination image